If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60a^2+198a+120=0
a = 60; b = 198; c = +120;
Δ = b2-4ac
Δ = 1982-4·60·120
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10404}=102$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(198)-102}{2*60}=\frac{-300}{120} =-2+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(198)+102}{2*60}=\frac{-96}{120} =-4/5 $
| -4w^2-14w+140=0 | | 7=10-g—2 | | 7.4+9.2p=2.7 | | n+(-5)=72/5 | | -3x-3=-7-15x | | 6x-2=4x-48 | | 4.5=-7+x | | 8p^2+8p-240=0 | | -9y^2+21y+10=0 | | 3x+5=6+3x | | 8w=w+35 | | -3/5x+3/5=18/10 | | (40)=-8x+64 | | -3/4z+5=-1 | | 3x+2=11+3X | | 2x-(3/7)=(x/5)+1 | | 3(x-17)=x-19 | | 6p=p+35 | | 4x+1/2(4x+12)=2(4x+3 | | -5-6x=104 | | 1-|1/3q-5|=6 | | 3(2y−1)=6y+2 | | -1/2-2/7x=1/3 | | 8(q+31)=50 | | x+4/7=1/14 | | 2y^-1/5=-6 | | 2+5m=10+7m | | 9b^2+66b+12=0 | | 2-b=24 | | 2z+6-5z/2=0 | | (x+2)(x+2)-1=35 | | 10^x=500 |